Product Description
We are a professional company in bulk material handling, transportation, storage, processing, accessory equipment design, integration and manufacturing. We can provide a complete set of solutions. Thank you for reading the information and welcome to purchase! Welcome to agent distribution!
Brief introduction of the company’s manufacturing capacity
The company’s headquarters, technology and sales are located in Lingang New Area of China (ZheJiang ) pilot free trade zone,The company’s manufacture base is located in Xihu (West Lake) Dis. county, ZHangZhoug Province, which is known as “the most beautiful county in China”. It is 65 kilometers away from HangZhou city and 60 kilometers away from Qiandao Lake. The transportation to Xihu (West Lake) Dis. county from other places is very convenient. No matter by railway, highway or waterway. The manufacture base has a total plant area of around 30000 square CHINAMFG and workshop is equipped with more than 300 sets of various advance manufacture equipment, including 20 sets of CNC precision vertical lathe MODEL: SMVTM12000×50/150, CNC vertical lathe MODEL:DVT8000×30/32, CNC horizontal lathe, MODEL: CK61315×125/32, CNC horizontal lathe MODEL:CK61200×80/32, CNC Grounding boring and milling machine MODEL:TJK6920,etc.Most of the parts are machined by using CNC machine equipment. Theis is a hot treatment CHINAMFG with size 10.5m×8m×8m. The manufacture base also equipped with lifting capacity of 25t, 50t, 100t, 200t overhead crane to handle heavy workpiece and assembly work.
Metalworking equipment
Name of equipment | Model number | Quantity | SCOPE of application | |
A | Lathes | |||
1 | Vertical Lathe | Numerical control | 1 | Φ 12000 |
2 | Vertical Lathe | Numerical control | 1 | Φ 8000 |
3 | Vertical Lathe | 1 | Φ 1600 | |
4 | Vertical Lathe | C5112A | 1 | Ф 1250 |
5 | Horizontal Lathe | Numerical control | 1 | CK61315×12×100T |
6 | Horizontal Lathe | CW61200 | 1 | Ф 2000×8000 |
7 | Horizontal Lathe | CW61160 | 1 | Ф 1600×6500 |
8 | Horizontal Lathe | CW6180 | 2 | Ф 800×3000 |
9 | Horizontal Lathe | CW61125 | 2 | Ф 1250×5000 |
10 | Horizontal Lathe (remodel) | CW62500 | 2 | Ф 2800×6000 |
11 | Common Lathe | CY6140 | 3 | Ф 400×1000 |
12 | Common Lathe | CA6140 | 3 | Ф 400×1500 |
13 | Common Lathe | C620 | 2 | Ф 400×1400 |
14 | Common Lathe | C616 | 1 | Ф 320×1000 |
15 | Common Lathe | C650 | 1 | Ф 650×2000 |
B | Drilling machine | |||
1 | Radial drilling machine | Z3080 | 3 | Ф 80×2500 |
2 | Radial drilling machine | Z3040 | 2 | Ф 60×1600 |
3 | Universal drilling machine | ZW3725 | 3 | Ф 25×880 |
C | Planing machine | |||
1 | Shaper | B665 | 1 | L650 |
2 | Hydraulic Shaper | B690 | 1 | L900 |
3 | Gantry Planer | HD–16 | 1 | L10000×B1600 |
D | Milling Machine | |||
1 | 4 Coordinate Milling Machine | Numerical control | 1 | 2500×4000 |
2 | Gantry milling machine | Numerical contro | 1 | 16mx5mx3m |
3 | Gantry milling machine | Numerical contro | 1 | 12mx4mx2.5m |
4 | Gantry milling and boring machine | Numerical contro | 1 | Φ 250 |
5 | Vertical Milling Machine | XS5054 | 1 | 1600×400 |
6 | Horizontal Milling Machine | C62W | 1 | 1250×320 |
7 | Horizontal Milling Machine | X60 | 1 | 800×200 |
8 | Gantry milling machine | X2014J | 1 | L4000×B1400 |
9 | Gantry milling machine | X2571J | 1 | L3000×B1000 |
10 | Floor end milling | TX32-1 | 1 | L1500×H800 |
E | Grinding machine | |||
1 | External Grinder | M131W | 1 | Ф 300×1000 |
2 | External Grinder | M1432B | 1 | Ф 320×15000 |
3 | Surface Grinder | M7130 | 1 | L 1000×300 |
4 | Tool grinder | M6571C | 1 | Ф 250 |
F | Boring machine | |||
1 | Floor-standing milling and boring machine | TJK6920 | 1 | X12000 × Y4500 × Z1000 |
2 | Boring machine | TSPX619 | 1 | Ф 1000 |
3 | Boring machine | T616 | 1 | Ф 800 |
4 | Boring machine | T611 | 1 | Ф 800 |
G | Slotted bed | |||
1 | Slotted bed | B5032 | 1 | H320 |
H | Other machine tools | |||
1 | Gear hobbing machine | Y3150 | 1 | Ф 500 M=6 |
2 | Hacksaw machine | G7571 | 1 | Ф 220 |
Products and services available
Material handling equipment
Storage equipment
Conveying equipment
Feeding equipment
Component of conveying system
Belt conveyor parts
Large and medium sized finishing parts
If you need above products, please contact us!
ZheJiang Sunshine Industrial Technology Co. , Ltd.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Customization |
---|---|
Hardness: | Customization |
Gear Position: | Customization |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can worm wheels be customized for specific industries or machinery configurations?
Yes, worm wheels can be customized to meet the specific requirements of different industries or machinery configurations. Here’s a detailed explanation of the customization options available for worm wheels:
- Tooth Profile: The tooth profile of a worm wheel can be customized to match the mating worm gear and optimize the performance of the gear system. Different tooth profiles, such as involute, cycloidal, or modified profiles, can be designed and manufactured based on the specific application requirements. Customizing the tooth profile ensures proper meshing, reduces wear, and enhances the overall efficiency and performance of the gear system.
- Material Selection: Worm wheels can be customized by selecting the appropriate material based on the industry or application requirements. Different materials, such as steel, bronze, brass, or specialized alloys, offer varying properties such as strength, wear resistance, corrosion resistance, and self-lubricating characteristics. Customizing the material selection ensures that the worm wheel can withstand the specific operating conditions and provide optimal performance and longevity.
- Size and Dimensions: Worm wheels can be customized in terms of size and dimensions to fit the specific machinery configuration or space constraints. Customization allows for the adjustment of parameters such as outer diameter, pitch diameter, face width, and bore diameter to ensure proper integration and alignment within the system. Custom sizing ensures efficient power transmission, minimizes space requirements, and enables compatibility with other components.
- Number of Threads: The number of threads on a worm wheel can be customized to tailor the gear reduction ratio and torque capacity to the specific application requirements. Increasing or decreasing the number of threads affects the gear ratio, torque output, and contact area. Customizing the number of threads allows for precise matching with the desired speed reduction and torque transmission needs of the machinery.
- Specialized Coatings or Treatments: Depending on the industry or application, worm wheels can undergo specialized coatings or treatments to enhance their performance. For example, coatings such as Teflon or molybdenum disulfide can reduce friction and improve lubrication properties. Heat treatments or surface hardening can increase wear resistance and durability. Customized coatings or treatments can be applied to meet specific requirements, such as high-speed operation, extreme temperatures, or corrosive environments.
- Noise and Vibration Control: In certain industries or applications where noise and vibration control is critical, worm wheels can be customized to incorporate features that reduce noise and vibration levels. Design modifications, such as optimizing tooth profiles, refining manufacturing tolerances, or incorporating damping elements, can help minimize noise and vibration generation. Customization for noise and vibration control is particularly important in industries like automotive, aerospace, and precision machining.
By offering customization options, worm wheels can be tailored to meet the unique needs of various industries or machinery configurations. This flexibility allows engineers and designers to optimize the performance, efficiency, durability, and reliability of gear systems, ensuring smooth and precise motion in specific applications.
How does the design of worm wheels impact their performance in different environments?
The design of worm wheels plays a significant role in determining their performance in different environments. Here’s a detailed explanation of how the design of worm wheels impacts their performance:
- Tooth Profile: The tooth profile of a worm wheel can significantly affect its performance. Different tooth profiles, such as involute, cycloidal, or modified profiles, offer varying characteristics in terms of contact area, load distribution, and efficiency. The selection of the appropriate tooth profile depends on factors such as the application requirements, load capacity, and desired efficiency. For example, in applications where high load capacity is crucial, a modified tooth profile may be preferred to enhance the gear’s strength and durability.
- Material Selection: The choice of material for worm wheels is crucial for their performance in different environments. Worm wheels can be made from various materials, including steel, bronze, brass, or specialized alloys. Each material offers different properties such as strength, wear resistance, corrosion resistance, and self-lubrication. The selection of the appropriate material depends on factors such as the operating conditions, anticipated loads, and environmental factors. For example, in applications where corrosion resistance is essential, a stainless steel or corrosion-resistant alloy may be chosen to ensure long-term performance in harsh environments.
- Lubrication and Sealing: Proper lubrication and sealing are vital for the performance of worm wheels, especially in challenging environments. The design of worm wheels should consider factors such as lubrication requirements, sealing mechanisms, and the ability to prevent contamination ingress. Lubrication ensures smooth operation, reduces friction, and minimizes wear between the worm gear and the worm wheel. Effective sealing prevents the entry of contaminants such as dust, dirt, or moisture, which can adversely affect the gear’s performance and lifespan. The design should incorporate appropriate lubrication and sealing provisions based on the specific environmental conditions.
- Heat Dissipation: In environments where high temperatures are present, the design of worm wheels should consider heat dissipation mechanisms. Excessive heat can lead to premature wear, reduced efficiency, and potential damage to the gear system. The design may include features such as cooling fins, heat sinks, or ventilation channels to facilitate heat dissipation and maintain optimal operating temperatures. Proper heat dissipation design ensures the longevity and reliability of worm wheels in high-temperature environments.
- Noise and Vibration Control: The design of worm wheels can incorporate features to control noise and vibration, which are particularly important in certain environments. Modifications to the tooth profile, manufacturing tolerances, or the addition of damping elements can help reduce noise and vibration generation. In noise-sensitive environments or applications where excessive vibration can affect precision or stability, the design should prioritize noise and vibration control measures to ensure smooth and quiet operation.
- Environmental Factors: The design of worm wheels should consider specific environmental factors that can impact their performance. These factors may include temperature extremes, humidity, corrosive substances, abrasive particles, or even exposure to outdoor elements. The design may incorporate protective coatings, specialized materials, or enhanced sealing mechanisms to mitigate the effects of these environmental factors. Considering and addressing the specific environmental challenges helps ensure optimal performance and longevity of worm wheels in different environments.
By carefully considering the design aspects mentioned above, worm wheels can be tailored to perform reliably and efficiently in different environments. The design choices made for tooth profile, material selection, lubrication, heat dissipation, noise and vibration control, and addressing environmental factors are essential for optimizing the performance and durability of worm wheels in their intended applications.
Can you explain the impact of worm wheels on the overall efficiency of gearing systems?
Worm wheels have a significant impact on the overall efficiency of gearing systems. Here’s a detailed explanation of their influence:
- Gear Reduction: Worm wheels are known for their high gear reduction ratios, which means they can achieve significant speed reduction in a single stage. This is due to the large number of teeth on the worm wheel compared to the number of starts on the worm. The gear reduction capability of worm wheels allows for the transmission of high torque at low speeds. However, it’s important to note that the high gear reduction also leads to a trade-off in terms of efficiency.
- Inherent Efficiency Loss: Worm gears inherently introduce some efficiency loss due to the sliding action that occurs between the worm and the worm wheel. This sliding action generates friction, which results in energy losses and heat generation. Compared to other types of gears, such as spur gears or helical gears, worm gears typically have lower efficiency levels.
- Self-Locking Property: One unique characteristic of worm wheels is their self-locking property. When the worm wheel is not being actively driven, the friction generated between the worm and the worm wheel prevents the worm wheel from rotating backward. This self-locking feature provides stability and prevents the system from backdriving. However, it also contributes to the overall efficiency loss of the gearing system.
- Lubrication and Friction: Proper lubrication of worm wheels is crucial for reducing friction and improving their efficiency. Lubrication forms a thin film between the worm and the worm wheel, reducing direct metal-to-metal contact and minimizing frictional losses. Insufficient or improper lubrication can lead to increased friction, higher energy losses, and reduced efficiency. Therefore, maintaining appropriate lubrication levels is essential for optimizing the efficiency of worm gear systems.
- Design Factors: Several design factors can impact the efficiency of worm wheels. These include the tooth profile, helix angle, material selection, and manufacturing tolerances. The tooth profile and helix angle can influence the contact pattern and the distribution of loads, affecting efficiency. The choice of materials with low friction coefficients and good wear resistance can help improve efficiency. Additionally, maintaining tight manufacturing tolerances ensures proper meshing and reduces energy losses due to misalignment or backlash.
- Operating Conditions: The operating conditions, such as the applied load, speed, and temperature, can also affect the efficiency of worm wheels. Higher loads and speeds can lead to increased friction and energy losses, reducing efficiency. Elevated temperatures can cause lubricant degradation, increased viscosity, and higher friction, further impacting efficiency. Therefore, operating within the specified load and speed limits and maintaining suitable operating temperatures are essential for optimizing efficiency.
In summary, worm wheels have a notable impact on the overall efficiency of gearing systems. While they offer high gear reduction ratios and self-locking capabilities, they also introduce inherent efficiency losses due to friction and sliding action. Proper lubrication, suitable design considerations, and operating within specified limits are essential for maximizing the efficiency of worm gear systems.
editor by Dream 2024-04-24